THE COMPLEXING PROPERTIES OF A CHIRAL 18-CROWN-6 DERIVATIVE INCORPORATING A 2,5-ANHYDRO-D-MANNITOL RESIDUE. A CONSTITUTIONAL AND STEREOCHEMICAL MEANS OF ENHANCING COMPLEXATION

> J. Anthony Haslegrave and J. Fraser Stoddart¹ Department of Chemistry, The University, Sheffield S3 7HF

David J. Thompson Organics Division, Imperial Chemical Industries Ltd., P.O. Box No. 42, Hexagon House, Blackley, Manchester M9 3BA

Measurements of both a thermodynamic and kinetic nature establish that an 18-crown-6 derivative incorporating a 'chiral diethyleneglycol' unit in the shape of a 2,5-anhydro-D-mannitol residue forms extremely strong complexes with alkali metal, NH_4 , and RNH_3 ions.

Our appreciation²⁻⁴ that the stereochemistry of noncovalent interactions in metal and organic cationic complexes of crown compounds plays a crucial role in determining their stabilities has prompted us to try and optimise the complexing ability of chiral 18-crown-6 derivatives containing carbohydrate residues. Examination of framework molecular models indicates that incorporation of a constrained 'diethyleneglycol' fragment in the form of either a *cis-* or *trans-*fused tetrahydrofuranyl-2,5-dimethylyl unit into the 18-crown-6 constitution can lead to improved orientations of oxygen atoms with respect to the bound cation—metal or primary alkylammonium—compared with those observed for complexes of 18crown-6. Indeed, there is evidence⁵ that tetrahydrofurano-18-crown-6 compounds containing one, two, and three fused 5-membered rings—usually obtained and evaluated as diastereoisomeric mixtures—form slightly stronger complexes with Bu^tNH₃+SCN⁻ in CDCl₃ than does 18crown-6 itself.⁶ Fortunately, there is a readily available source⁷ of a 'chiral diethyleneglycol' unit⁸ in 2,5-anhydro-<u>p</u>-mannitol <u>p</u>-(<u>1</u>), which can be obtained⁹ in two steps from <u>p</u>-glucosamine hydrochloride. In this communication, we describe (*i*) the preparation of the 18-crown-6 derivative <u>p</u>-(<u>2</u>) and report on (*ii*) a preliminary assessment of the binding properties of <u>p-2</u> towards alkali metal, NH₄⁺, and RNH₃⁺ ions.

Treatment (*cf.* ref. 10) of $\underline{P}-\underline{1}^{11}$ in Me₂NCHO with 2.2 molar equivs. of Bu^tMe₂SiCl in the presence of imidazole (5 molar equivs.) led¹² to a good yield (62%) of the bis-*t*-butyl-dimethylsilyl ether $\underline{P}-(\underline{3})$, m.p. 40-42°, $[\alpha]_{\underline{P}}$ + 19.0° (*c* 0.4, CHCl₃) after medium pressure liquid chromatography (Et₂0:light petroleum, b.p. 60-80°, 2:1) on SiO₂. Methylation

2279

Table 1.	The association constants $(K_a)^a$ and derived free energies of complexation (ΔG)
	for the formation of 1:1 complexes between $\underline{D}=\underline{2}$ and some selected picrate salts
	in CDCl ₃ at 25 ⁰ C.

Cation	LI ⁺	Na ⁺	к+	Rb ⁺	NН ₄ +	MeNH3+	Bu ^t NH3 ⁺	
$K_{a} \times 10^{-6} (M^{-1})$	0.075	1.30	110.0	4.90	12.0	1.60	0.25	
ΔG (kcal mol ⁻¹)	-6.6	-8.3	-11	-9.1	-9.7	-8.5	-7.4	

^{*a*}The K_a values were determined by a u.v. spectroscopic method following extraction of aqueous picrate solutions with CDCl₃ solutions of <u>D</u>-2 (see K.E. Koenig, R.C. Helgeson, and D.J. Cram, *J.Amer.Chem.Soc.*, <u>98</u>, 4018 (1976) and S.S. Moore, T.L. Tarnowski, M. Newcomb, and D.J. Cram, *ibid.*, <u>99</u>, 6398 (1977)).

(MeI/NaH/THF) of the secondary hydroxyl groups of $\underline{D}=\underline{3}$ gave $\underline{D}=\underline{4}$, $[\alpha]_{D} + 1.0^{\circ}$ (c 1.0, CHCl₃), as a pure oil in 96% yield after column chromatography (light petroleum, b.p. 60-80° : Et₂0, 2:1) on SiO₂. The silyl ether protecting groups in $\underline{D}=\underline{4}$ were hydrolysed (AcOH:H₂0:THF,3:1:1)¹³ affording (95%) 2,5-anhydro-3,4-di-O-methyl- \underline{D} -mannitol $\underline{D}=(\underline{5})$, $[\alpha]_{\underline{D}} + 55.7^{\circ}$ (c 1.0, CHCl₃) as an oil after column chromatography (EtOAc) on SiO₂. Condensation (NaH/Me₂SO) of $\underline{D}=\underline{5}$ with tetraethyleneglycol bistosylate¹⁴ at 45°C gave (19%) the 18-crown-6 derivative $\underline{D}=(\underline{2})$, b.p. 120-122° (0.03 mm), $[\alpha]_{\underline{D}} + 35.8^{\circ}$ (c 0.5, CHCl₃), ¹H n.m.r. data : δ (CD₂Cl₂) 3.32 (s, 6H, 2 x OMe), 3.45-3.70 (m, all other protons other than the bridgehead protons), and 4.03 (bs, 2H, bridgehead protons).

The association constants (\mathcal{K}_a) for 1:1 complex formation between <u>**D**-2</u> and selected picrate salts are listed in Table 1. The derived free energies of complexation (ΔG) indicate that, although the 'all-gauche-O-C-C-O' conformation² is denied to the macrocyclic ring, $\underline{D}-\underline{2}$ still forms very strong complexes 15 with alkali metal, NH₄⁺, and RNH₃⁺ ions. At least two factors - one constitutional and the other stereochemical - probably contribute to this observation. They are (i) the increased basicity of tetrahydrofuranyl oxygen atoms 16 over 'ordinary' crown ether oxygen atoms and (ii) the increased cooperativity of binding sites indicated from inspection of molecular models — brought about by incorporation of a transfused tetrahydrofuranyl residue into the 18-crown-6 constitution. The C_2 symmetry which characterises $\underline{P}-\underline{2}$ means that dynamic ¹H n.m.r. spectroscopy can be employed ¹⁷ to study the kinetics of exchange of RNH_3^+ cations between opposite faces of isometric 1:1 complexes.¹⁸ The results of these investigations, which rely upon the temperature dependent behaviour of the signals for H-2 and H-5— and in some cases, for the OMe protons— of $\underline{P}=\underline{2}$ -RNH $_{3}^{+}X^{-}$ complexes in CD_2Cl_2 are recorded in Table 2. Since the 18-membered ring of $\underline{P}=2$ cannot undergo ring inversion, the ΔG_{c}^{\dagger} values can be equated with the free energies of activation (ΔG_{d}^{\dagger}) for dissociation of the isometric complexes. Reference to the data listed in Tables 1 and 2 allows the following observations to be made: (i) The order of stabilities for the alkali metal cations as their picrate salts is $K^+ > Rb^+ > Na^+ > Li^+$ as expected for an 18crown-6 derivative. (*ii*) The picrate salts of RNH_3^+ cations decrease in stability in the order for R of H > Me > Bu^t , a trend which probably reflects the decreasing stabilisation of the complexes through pole pole interactions and hydrogen bonding with the anion as much as the increasing steric bulk of the R group across the series. (iii) The kinetic stabilities

R	x	¹ H N.m.r. probes	N.m.r. (δ at 30 ⁰) robes		Δν(^o c),±2 ^{o^b}	k s ⁻¹	$\Delta G_{c}^{\ddagger}, \pm 0.3^{b}$ kcal mol ⁻¹
Me	SCN	H-2,5	(4.12)	-80	59 (-95)	131	9.3
Me	C104	H-2,5	(4.10)	-82	58 (-95)	129	9.2
Et.	C104	H-2,5	(4.11)	-62	53 (-80)	118	10.2
Pri	SCN	H-2,5	(4.05)	-55	54 (~90)	120	10.5
•		2 x OMe	(3.33)	- 75	8 (-85)	18	9.9
Pr ⁱ	C104	H-2,5	(4.12)	0	40 (~28)	89	13.5
		2 x OMe	(3.36)	-25	9 (-30)	20	13.1
Bu ^t	SCN	H-2,5	(4.15)	- 35	66 (~60)	147	11.5
		2 x 0Me	(3.38)	-50	13 (-60)	29	11.4
Bu ^t	C104	H-2,5	(4.15)	- 15	61 (-70)	135	12.5
		2 x 0Me	(3.38)	-40	10 (~50)	22	12.1
PhCH ₂	SCN	H-2,5	(4.06)	-50	81 (-80)	179	10.6
PhCH ₂	C104	H-2,5	(4.08)	-20	52 (-40)	116	12.3
)-PhCHMe	SCN	H-2,5	(4.10)	-50	66 (-80)	147	10.0
)-PhCHMe	C104	H-2,5	(4.10)	-54	62 (~80)	138	10.5
)-PhCHMe	SCN	H-2,5	(4.08)	-54	57 (-70)	126	10.6
)-PhCHMe	C104	H-2,5	(4.05)	-55	61 (-90)	135	10.5

Table 2. Temperature dependent ¹H n.m.r. spectral data and kinetic and thermodynamic parameters for the 1:1 complexes formed between selected $\text{RNH}_3^+ X^-$ salts and $\underline{P} - \underline{2}^{\alpha}$

 $^a\rm All$ spectra were recorded in $\rm CD_2\rm Cl_2$ at 220 MHz on a Perkin Elmer R34 spectrometer with Me4Si as "lock" and internal standard

^bAbbreviations used are: T_c , coalescence temperature; Δv , frequency separation of the appropriate ¹H n.m.r. probe with the temperature at which it was measured indicated in parenthesis; k_c , exchange rate constant at T_c calculated from the expression $k_c = \pi \Delta v/2^2$; ΔG_c^2 , free energy of activation calculated from the Eyring equation.

of the SCN⁻ and ClO₄⁻ salts depend upon the nature of the cation and the sequence for R of Pr¹ > Bu^t > PhCH₂ > (R)-PhCHMe \cong (S)-PhCHMe \cong Et > Me holds more or less in accordance with previous observations ¹⁹⁻²¹ on other crown compounds. (*iv*) Complexes involving ClO₄⁻ salts are generally^{20,21} more stable kinetically than those involving SCN⁻ salts, although MeNH₃⁺X⁻ and (S)-PhCHMeNH₃⁺X⁻ provide exceptions.²²

The following conclusions can be drawn: (*i*) Complexation of cations by 18-crown-6 derivatives can be enhanced by constitutional and stereochemical means. (*ii*) Differences in ΔG values are not necessarily reflected in differences in ΔG_d^{\ddagger} values, *i.e.* the free energies of association can vary depending upon the nature of the crown (*cf.* ref. 3) and the cation.²³ (*iii*) The nature of the cation *can* influence the relative kinetic complexing strengths of complexes associated with different anions.²²

References and Footnotes

- 1. Address all correspondence to this author at the Corporate Laboratory, Imperial Chemical Industries Ltd., P.O. Box No. 11, The Heath, Runcorn, Cheshire WA7 4QE.
- A.C. Coxon, D.A. Laidler, R.B. Pettman, and J.F. Stoddart, J. Amer Chem. Soc., <u>100</u>, 8260 (1978)
- 3. R.B. Pettman and J.F. Stoddart, Tetrahedron Lett., 461 (1979).
- 4. D.A. Laidler, J.F. Stoddart, and J.B. Wolstenholme, Tetrahedron Lett., 465 (1979).
- J.M. Timko, S.S. Moore, D.M. Walba, P.C. Hiberty, and D.J. Cram, J. Amer Chem. Soc., <u>99</u>, 4207 (1977).

- It has not escaped our attention that tetrahydrofuranyl units are encountered commonly in naturally-occurring ionophores.
- 7. Dr. R.A. Wall of Edinburgh University extolled the virtues of this source of chirality to us in April, 1977.
- The 'chiral diethyleneglycol' unit in <u>P-1</u> to <u>P-5</u> is indicated by means of thickened bonds in the formulae.
- 9. B.C. Bera, A.B. Foster, and M. Stacey, J. Chem. Soc., 4531 (1956).
- 10. E.J. Corey and A. Venkateswarlu, J. Amer. Chem. Soc., 24, 6190 (1972).
- 11. <u>D</u>-1 is most readily purified by converting (Ac₂0/pyridine) it to its tetraacetate, $\begin{bmatrix} \alpha \end{bmatrix}_D + 33.0^{\circ}$ (*c* 1.12, CHCl₃) (R.U. Lemieux and B. Fraser-Reid, *Canad. J. Chem.*, <u>42</u>, 547 (1964) report $\begin{bmatrix} \alpha \end{bmatrix}_D + 27.3$ (*c* 4.2, CHCl₃)) and subjecting it to medium pressure liquid chromatography (light petroleum, b.p. 60-80° : EtOAc, 3:1) on SiO₂ before regenerating (NaOMe/MeOH) <u>D</u>-1.
- 12. The compositions of all new compounds were confirmed by elemental analysis. Structural assignments were based upon the results of mass spectrometry and ¹H n.m.r. spectroscopic evidence.
- 13. See footnote 9 in ref. 10.
- 14. J. Dale and P.O. Kristiansen, Acta. Chem. Scand., 26, 1471 (1972).
- 15. By way of comparison, the K_a × 10⁻⁶ values for the 1:1 complexes formed between methyl 4,6-0-benzylidene-2,3-dideoxy-β-D-glucopyranosido[2,3-b][1,4,7,10,13,16]hexaoxacyclo-octadecane (R.B. Pettman and J.F. Stoddart, *Tetrahedron Lett.*, 457 (1979)) and the picrates of Li⁺, Na⁺, K⁺, Rb⁺, NH₄⁺, MeNH₃⁺, and Bu^tNH₃⁺ in CDCl₃ are (R.B. Pettman and J.F. Stoddart, unpublished results) 0.073, 0.13, 0.53, 0.22, 0.24, 0.011, and 0.002 M⁻¹ respectively.
- 16. E.M. Arnett, Prog. Phys. Org. Chem., <u>1</u>, 223 (1963); S. Searles Jr. and M. Tamres, "The Chemistry of the Ether Linkage", ed. S. Patai, Wiley-Interscience, London, 1967, Chapter 6, p. 243; A.H. Haines, "Cyclic Ethers" in Barton and Ollis's Comprehensive Organic Chemistry, Volume 1, ed. J.F. Stoddart, Pergamon Press, Oxford, 1979, Part 4.4, p. 853.
- 17. J.F. Stoddart, Chem. Soc. Revs., in press.
- 18. K. Mislow, Bull. Soc. Chim. Belg., 86, 595 (1977).
- 19. L.C. Hodgkinson, S.J. Leigh, and I.O. Sutherland, J.C.S. Chem. Comm., 639 (1976).
- J.C. Metcalfe, J.F. Stoddart, and G. Jones, J. Amer Chem. Soc., <u>99</u>, 8317 (1977);
 D.A. Laidler and J.F. Stoddart, Tetrahedron Lett., 453 (1979).
- 21. F. de Jong, D.N. Reinhoudt, and G.J. Torny, Tetrahedron Lett., 911 (1979).
- 22. In the case of the D-2-MeNH3⁺X⁻ complexes, it is conceivable that X⁻ ions and SCN⁻ ions in particular can hydrogen bond to the acidic Me group rather than compete with the crown ether oxygens for hydrogen bonding to the NH3⁺ centre. Thus, we caution against any generality for the recent claim (see ref. 21) that 'the structure of the cation has little effect on the relative complex stabilities for different anions.'
- 23. Inspection of the relevant data in Tables 1 and 2 reveals that although the MeNH₃⁺ cation forms a stronger complex with \underline{D} -2 under equilibrium conditions than does the $Bu^{t}NH_{3}^{+}$ cation, the MeNH₃⁺ cationic complexes are kinetically much less stable than the $Bu^{t}NH_{3}^{+}$ cationic complexes. Despite the fact that an anion effect cannot be discounted as the source of at least a partial explanation for this observation, it seems likely that the *differences* in ΔG values are markedly *different* in constitution.

(Received in UK 30 March 1979)