THE COMPLEXING PROPERTIES OF A CHIRAL 18-CROWN-6 DERIVATIVE INCORPORATING A 2,5-ANHYDRO-D-**MANNITOL RESIDUE. A CONSTITUTIONAL AND STEREOCHEMICAL MEANS OF ENHANCING COMPLEXATION**

> **J. Anthony Haslegrave and J. Fraser Stoddart' Department of Chemistry, The University, Sheffield S3 7HF**

David J. Thompson Organics Division, Imperial Chemical Industries Ltd., P.O. Box No. 42, Hexagon House, Blackley, Manchester M9 3BA

Measurements of both a thermodynamic and kinetic nature establish that an I&crown-6 derivative *incorporating a 'chiraZ ðylenegZycoZ'* unit in *the shape of a 2,5-anhydro-P-~annito2 regidue* forms *extremely strong complexes with alkali metal, NH4 , and RNH3 ions.*

Our appreciation²⁻⁴ that the stereochemistry of noncovalent interactions in metal and **organic cationic complexes of crown compounds plays a crucial role in determining their stabi li ties has prompted us to try and optimise the complexing ability of chiral 18-crown-6 derivatives containing carbohydrate residues. Examination of framework molecular models indicates that incorporation of a constrained 'diethyleneglycol' fragment in the form of either a cis- or trans-fused tetrahydrofuranyl-2,5-dimethylyl unit into the 18-crown-6 constitution can lead to improved orientations of oxygen atoms with respect to the bound** cation-metal or primary alkylammonium-compared with those observed for complexes of 18**crown-6. Indeed, there is evidence' that tetrahydrofurano-18-crown-6 compounds containing** one, two, and three fused 5-membered rings **-**usually obtained and evaluated as diastereo**isomeric mixture crown-6 itself. ⁶ form slightly stronger complexes with Bu'NH3+SCN- in CDCl3 than does 18-** Fortunately, there is a readily available source [/] of a 'chiral diethyle glycol' unit⁸ in 2,5-anhydro-<u>D</u>-mannitol <u>D</u>-(1), which can be obtained⁹ in two steps from \underline{D} -glucosamine hydrochloride. In this communication, we describe (i) the preparation of the 18-crown-6 derivative D-(2) and report on *(ii)* a preliminary assessment of the binding prop**erties of <u>D</u>-2 towards alkali metal, NH₄ , and RNH 3 ions**

<code>Treatment ($cf.$ ref. 10)</code> of <code>D-1''</code> in <code>Me \Box NCHO</code> with 2.2 molar equivs. of <code>Bu*Me \Box SiCl in</code> the presence of imidazole (5 molar equivs.) led^{.e.} to a good yield (62%) of the bis- t -b_' dimethylsilyl ether <u>D</u>-(<u>3</u>), m.p. 40–42°, [α]_D + 19.0° (*c* 0.4, CHCl $_3$) after medium pressu liquid chromatography (Et₂0:light petroleum, b.p. 60-80⁰, 2:1) on Si0₂. Methylation

2279

aThe If, values were determined by a U.V. spectroscopic method following extraction of aqueous picrate solutions with CDCl₃ solutions of <u>D</u>-2 (see K.E. Koenig, R.C. Helgeson, and D.J. Cram *J.Amer.Chem.Soc., Ss, 40'8 ('976)* **and S.S.-Moore, T.L. Tarnowski, M. Newcomb, and D.J. Cram, 8id.. \$2,** *6398 (1CQ7)).*

(Mel/NaH/THF) of the secondary hydroxyl groups of <u>D</u>-3 gave <u>D</u>-4, [α], + 1.0° (*c* 1.0, CHCl₃) **as a pure oil in 96% yield after column chromatography (light petroleum, b.p. 60–80° : Et₃0** 2:1) on SiO₂. The silyl ether protecting groups in <u>D-4</u> were hydrolysed (AcOH:H₂O:THF,3:1:1)¹³ **affording (95%) 2,5-anhydro-3,4-di-**O-methyl-<u>D</u>-mannitol <u>D</u>-(<u>5</u>), [α]_D + 55.7° (*c* 1.0, CHCl₃) as an oil after column chromatography (EtOAc) on SiO_p. Condensation (NaH/Me_nSO) of <u>D</u>-5 wit tetraethyleneglycol bistosylate [.] at 45°C gave (19%) the 18-crown-6 derivative <u>D</u>-(2), b.p **120-122[°] (0.03 mm),** $[\alpha]_D + 35.8^{\circ}$ **(c 0.5, CHC1₃), ¹H n.m.r. data : 6 (CD₂C1₂) 3.32 (s, 6H, 2 x OMe), 3.45-3.70 (m, al** I **other protons other than the bridgehead protons), and 4.03 (bs, 2H. bridgehead protons).**

The association constants $(K_{\mathbf{a}})$ for 1:1 complex formation between $\underline{\mathbf{b}}$ -2 and selected **picrate salts are listed in Table 1. The derived free energies of complexation (AG) indicate that, although the 'all-gauche-O-C-C-O' conformation2 is denied to the macrocyclic ring, 9-2 sti I I forms very strong complexes** *'5* **with alkali metal, NH** *4+'* **and RNH ' ions. At least two** *3* factors- one constitutional and the other stereochemical-probably contribute to this observation. They are (i) the increased basicity of tetrahydrofuranyl oxygen atoms ¹⁶ over 'ordinary' crown ether oxygen atoms and $(i\dot{i})$ the increased cooperativity of binding sites indicated from inspection of molecular models - brought about by incorporation of a *trans*fused tetrahydrofuranyl residue into the 18-crown-6 constitution. The C_2 symmetry which **characterises E-2 means that dynamic 1 H n.m.r. spectroscopy can be employed '7 to study the kinetics of exchange of RNH + cations between opposite faces of isometric 1:' complexes. 18 3 The results of these investigations, which rely upon the temperature dependent behaviour of** the signals for H-2 and H-5 $-$ and in some cases, for the OMe protons $-$ of <u>D</u>-2-RNH₂⁺X complexes in CD₉Cl₂ are recorded in Table 2. Since the 18-membered ring of <u>D</u>-2 canno undergo ring inversion, the ΔG^{T} values can be equated with the free energies of activat $(\vartriangle G^{\intercal}_{\cdot})$ for dissociation of the isometric complexes. Reference to the data listed in Table **1 and 2 allows the following observations to be made: (i) The order of stabilities for the alkali metal cations as their picrate salts is K+ > Rb t > Na + > Li ' as expected for an '8** crown-6 derivative. (*ii*) The picrate salts of RNH₃⁺ cations decrease in stability in the **order for R of H > Me > But, a trend which probably reflects the decreasing stabil'sation of the complexes through pole pole interactions and hydrogen bonding with the anion as much as** the increasing steric bulk of the R group across the series. *(iii)* The kinetic stabilities

R.	Χ	'H N.m.r. probes	$(6$ at $30^{\circ})$	T_{c} , ${}^o c^b$	$\Delta v(^{\circ}c)$, $\pm 2^{\circ}$	k _c -1	$\begin{array}{c}\n\Delta G_C^{\dagger}, ^{\dagger}0.3^b \\ \text{kcal mod}\n\end{array}$
Мe	SCN	$H - 2.5$	(4.12)	-80	(-95) 59.	131	9.3
Me	C10 ₄	$H - 2.5$	(4.10)	-82	58 (-95)	129	9.2
Et	C10 ₄	$H - 2, 5$	(4.11)	-62	(-80) 53.	118	10.2
Pri	SCN	$H - 2.5$	(4.05)	-55	(-90) 54.	120	10.5
		2×0 Me	(3.33)	- 75	(-85) 8	18	9.9
Pr ⁱ	C10 ₄	$H - 2, 5$	(4.12)	$\mathbf 0$	40. (-28)	89	13.5
		2×0 Me	(3.36)	-25	(-30) 9	20	13.1
Bu ^t	SCN	$H - 2, 5$	(4.15)	-35	66 (-60)	147	11.5
		2×0 Me	(3.38)	-50	(-60) 13	29	11.4
Bu^t	C10 ₄	$H - 2, 5$	(4.15)	-15	61 (-70)	135	12.5
		2×0 Me	(3.38)	-40	(-50) 10	22	12.1
PhCH ₂	SCN	$H - 2, 5$	(4.06)	-50	(-80) 81	179	10.6
PhCH ₂	C10 _u	$H - 2, 5$	(4.08)	-20	(-40) 52	116	12.3
(R) -PhCHMe	SCN	$H-2.5$	(4.10)	-50	(-80) 66	147	10.0
(R) -PhCHMe	C10 ₄	$H - 2, 5$	(4.10)	-54	(-80) 62	138	10.5
(S) -PhCHMe	SCN		(4.08)	-54	(-70)	126	10.6
		$H - 2, 5$			57		
(S) -PhCHMe	C10 ₄	$H - 2, 5$	(4.05)	-55	61 (~90)	135	10.5

Temperature dependent ¹H n.m.r. spectral data and kinetic and thermodynamic Table 2. parameters for the 1:1 complexes formed between selected RNH₂⁺X⁻ salts and $2^{-2^{\alpha}}$

 a All spectra were recorded in CD₂Cl₂ at 220 MHz on a Perkin Elmer R34 spectrometer with Me4Si as "lock" and internal standard

b
Abbreviations used are: T_c , coalescence temperature; Δv , frequency separation of the
appropriate 1 H n.m.r. probe with the temperature at which it was measured indicated in
parenthesis; k_c , exchange rate const

of the SCN^{$-$} and ClO₄^{$-$} salts depend upon the nature of the cation and the sequence for R of $Pr^1 > Bu^t > PhCH_2 > (R)$ -PhCHMe $\cong (S)$ -PhCHMe \cong Et > Me holds more or less in accordance with previous observations 19^{-21} on other crown compounds. (iv) Complexes involving ClO₄ salts are generally^{20,21} more stable kinetically than those involving SCN⁻ salts, although MeNH₂⁺X⁻ and (S) -PhCHMeNH₃⁺X⁻ provide exceptions.²²

The following conclusions can be drawn: (i) Complexation of cations by 18-crown-6 derivatives can be enhanced by constitutional and stereochemical means. (ii) Differences in ΔG values are not necessarily reflected in differences in $\Delta G_{\text{d}}^{\dagger}$ values, *i.e.* the free energies of association can vary depending upon the nature of the crown (ef. ref. 3) and the cation. 23 (iii) The nature of the cation can influence the relative kinetic complexing strengths of complexes associated with different anions.²²

References and Footnotes

- $1.$ Address all correspondence to this author at the Corporate Laboratory, Imperial Chemical Industries Ltd., P.O. Box No. 11, The Heath, Runcorn, Cheshire WA7 4QE.
- 2. A.C. Coxon, D.A. Laidler, R.B. Pettman, and J.F. Stoddart, J. Amer Chem. Soc., 100, 8260 (1978)
- 3. R.B. Pettman and J.F. Stoddart, Tetrahedron Lett., 461 (1979).
- 4. D.A. Laidler, J.F. Stoddart, and J.B. Wolstenholme, Tetrahedron Lett., 465 (1979).
- J.M. Timko, S.S. Moore, D.M. Walba, P.C. Hiberty, and D.J. Cram, J. Amer Chem. Soc., 99, 5. 4207 (1977).
- 6. **It has not escaped our attention that tetrahydrofuranyl units are encountered commonly in naturally-occurring ionophores.**
- **7. Dr. R.A. Wall of Edinburgh University extolled the virtues of this source of chirality to us in April, 1977.**
- 8. The 'chiral diethyleneglycol' unit in **D-1** to **D-5** is indicated by means of thickened **bonds in the formulae.**
- **9. B.C. Bera, A.B. Foster, and M. Stacey,** *J. &em. Sot.,* **4531 (1956).**
- **10. E.J. Corey and A. Venkateswarlu,** *J, Amer. &em. Sot., 22,* **6190 (1972).**
- **11. Q-1 is most readily purified by converting (AczO/pyridine) it to its tetraacetate, TeT + 33.0' (c 1.12, CHC13) (R.U. Lemieux and 8. Fraser-Reid, Canad.** *J. Chem., 22,* **547 (lYg4) report [al p + 27.3 (c 4.2, CHC13)) and subjecting it to medium pressure liquid chromatography (Ilght petroleum, b.p. 60-80°** : **EtOAc, 3:l) on SiO2 before regenerating (NaOMe/MeOH) p-1.**
- **12. The compositions of all new compounds were confirmed by elemental analysis. Structural assignments were based upon the results of mass spectrorretry and 'H n.m.r. spectroscopic evidence.**
- **13. See footnote 9 in ref. 10.**
- 14. J. Dale and P.O. Kristiansen, Acta. Chem. Scand., 26, 1471 (1972).
- 15. By way of comparison, the $K_a \times 10^{-6}$ values for the 1:1 complexes formed between methyl 4,6-0-benzylidene-2,3-dideoxy-*ß*-<u>p</u>-glucopyranosido[2,3-b][1,4,7,10,13,16]hexaoxacyclo**octadecane (R.B. Pettman and J.F. Stoddart,** $\mathit{Textnedrod}$ $\mathit{Lett.}$, 457 (1979)) and the **picrates of Li+, Na+, K+, Rb+, NHI++, MeNH3** , **and ButNH3+ in CDCl3 are (R.B. Pettman and J.F. Stoddart, unpublished results) 0.073, 0.13, 0.53, 0.22, 0.24, 0.011, and 0.002 M-l respectively.**
- **16. E.M. Arnett, Prog. Phys. Org. Fnem., 1, 223 (1963) ; S. Searles Jr. and M. Tamres, "The Chemistry of the Ether Linkage", ed. S. Patai, Wiley-interscience, London, 1967, Chapter 6, p. 243; A.H. Haines, "Cyclic Ethers" in Barton and Ollis's Comprehensive Organic Chemistry, Volume 1, ed. J.F. Stoddart, Pergamon Press, Oxford, 1979, Part 4.4, p. 853.**
- 17. J.F. Stoddart, Chem. Soc. Revs., in press.
- **18. K. Mislow,** *Bull. Sot. Chim. Belg., 86,* **595 (1977).**
- **19. L.C. Hodgkinson, S.J. Leigh, and I .O. Sutherland,** *J.C.S. C7zem. Comm.,* **639 (1976).**
- **20. J.C. Metcal fe, J.F. Stoddart, and G. Jones,** *J. Amer Chem. Sot., 22,* **8317 (1977);** D.A. Laidler and J.F. Stoddart, Tetrahedron Lett., 453 (1979).
- 21. F. de Jong, D.N. Reinhoudt, and G.J. Torny, Tetrahedron Lett., 911 (1979).
- 22. In the case of the <u>D</u>-2-MeNH₃⁺X⁻ complexes, it is conceivable that X⁻ ions--and SCN⁻ **ions in particular- can hydrogen bond to the acidic Me group rather than compete** with the crown ether oxygens for hydrogen bonding to the NH₃' centre. Thus, we cautio **against any generality for the recent claim (see ref. 21) that 'the structure of the cation has little effect on the relative complex stabilities for different anions.'**
- **23. inspection of the relevant data in Tables 1 and 2 reveals that although the MeNH3+** cation₊forms a stronger complex with <u>D-2</u> under equilibrium conditions than does the **ButNH3+ cation, the MeNH3 cationic complexes are kinetically much less stable than the ButNH3 cationic complexes. Despite the fact that an anion effect cannot be discounted as the source of at least a partial explanation for this observation, it seems likely that he &fferencee in AG values are not always reflected (cf. ref. 21) in differences** in AG **th** values when the cations are markedly *different* in constitution.

(Received in UK 50 March **1979)**